Refining AI Analysis with CP Techniques
or
How to identifying suspicious values in programs with floating-point numbers

Michel RUEHER

University of Nice Sophia-Antipolis / I3S – CNRS, France

(joined work with Olivier Ponsini, Claude Michel)

JFPC

June 2013
Introduction

• **Problem:** verifying programs with **floating-point computations**

Embedded systems written in C (transportation, nuclear plants,...)

• **Programs use floating-point numbers** but

 ▶ Specifications are written with the *semantics of reals* “in mind”

 ▶ Programs are written with the *semantics of reals* “in mind”
Floating-point arithmetic pitfalls

Rounding \leadsto Counter-intuitive properties

$$(0.1)_{10} = (0.000110011001100\cdots)_2$$

simple precision \leadsto 0.10000001490116119384765625

- Neither associative nor distributive operators
 $$(−10000001 + 10^7) + 0.5 \neq −10000001 + (10^7 + 0.5)$$

- Absorption, cancellation phenomena
 Absorption: $10^7 + 0.5 = 10^7$
 Cancellation: $((1 − 10^{-7}) − 1) * 10^7 = −1.192\cdots(\neq −1)$

\rightarrow Floats are source of errors in programs
Objectives & Method

Goals:

→ bounds for variables with real numbers semantics and floating-point numbers semantics
→ bounds for the error due to the use of floating-point numbers instead of real numbers

~ to identify suspicious values

Method: combining *abstract interpretation* & *constraint programming*
Outline

Problematic: Verifying Programs with FP computations

AI Approach: Abstraction of program states

Constraint Programming over continuous domains

Example 1

Combining AI and CP

Experiments

Conclusion
AI Approach: Abstraction of program states

Intervals, zonotopes, polyhedra...

Zonotopes: convex polytopes with a central symmetry
Sets of affine forms
\[\hat{a} = a_0 + a_1 \varepsilon_1 + \cdots + a_n \varepsilon_n \]
\[\hat{b} = b_0 + b_1 \varepsilon_1 + \cdots + b_n \varepsilon_n \]
with \(\varepsilon_i \in [-1, 1] \)

+ Good trade-off between performance and precision
– Not very accurate for nonlinear expressions
– Not accurate on very common program constructs such as conditionals
AI: Static analysis (cont.)

+ **Good scalability** for
 - Showing absence of runtime errors
 - Estimating rounding errors and their propagation
 - Checking properties of programs

– **Lack of precision**
 - Approximations may be very coarse
 - Over-approximation \(\leadsto\) possible false alarms
AI & False alarm

From Cousot:

http://www.di.ens.fr/~cousot/AI/IntroAbsInt.html
CP over continuous domains
A branch & prune process

Iteration of two steps:

1. **Pruning the search space**
2. **Making a choice to generate two (or more) sub-problems**

Pruning step → **reduces an interval** when the upper bound or the lower bound does not satisfy some constraint
Branching step → **splits the domain** of some variable in two or more intervals
Local consistencies – 2B–consistency

- A constraint c_j is 2B–consistent if for any variable x_i of c_j, the bounds D_{x_i} and \overline{D}_{x_i} have a support in the domains of all other variables of c_j.

 → Variable x is 2B–consistent for $f(x, x_1, \ldots, x_n) = 0$ if the lower (resp. upper) bound of the domain of x is the smallest (resp. largest) solution of $f(x, x_1, \ldots, x_n)$.

A CSP is 2B–consistent iff all its constraints are 2B–consistent.
3B–Consistency (1)

3B–Consistency, a shaving process

→

checks whether 2B–Consistency can be enforced when the domain of a variable is reduced to the value of one of its bounds in the whole system
Constraint Programming framework: sum up

+ Good **refutation** capabilities
 Flexibility: handling of integers, floats, non-linear expressions,...

− **Scalability**
 Pruning may be costly for **large domains**
 A CSP is a conjunction of constraints \(\sim\) a different constraint system is required for each path of the CFG
Example 1

float x = [0,10];
float y = x*x - x;
if (y >= 0)
 y = x/10;
else
 y = x*x + 2;
Example 1: Abstract Interpretation (zonotopes)

float x = [0,10];
float y = x*x - x;
if (y >= 0)
 y = x/10;
else
 y = x*x + 2;

$P_0: \hat{x}^0 = 5 + 5\varepsilon_1 \quad \varepsilon_1 \in [-1, 1]$
$D_x^0 = [0, 10]$

$P_1: \hat{y}^1 = 32.5 + 45\varepsilon_1 + 12.5\eta_1$
$\eta_1 \in [-1, 1]$
$D_x^1 = [0, 10] \quad D_y^1 = [-10, 90]$

$P_2: \hat{y}^2 = \hat{y}^1 \quad D_x^2 = [0, 10]$
$D_y^2 = [0, 90]$

$P_3: \hat{y}^3 = 0.5 + 0.5\varepsilon_1$
$D_y^3 = [0, 1]$

P_4

P_5

P_6
Example 1: Abstract Interpretation (zonotopes)

```plaintext
float x = [0,10];
float y = x*x - x;
if (y >= 0)
  y = x/10;
else
  y = x*x + 2;
```

- **Example 1**: Abstract Interpretation (zonotopes)
 - Initial state: $x^0 = 5 + 5\varepsilon_1$, $\varepsilon_1 \in [-1, 1]$
 - Domain: $D_x^0 = [0, 10]$

- **Path 1** (P_0)
 - Condition: $y \geq 0$
 - Transition: $y = x/10$
 - Domain: $D_x^1 = [0, 10]$
 - Domain of y: $D_y^1 = [-10, 90]$

- **Path 2** (P_2)
 - Condition: $y \geq 0$
 - Transition: $y = x/10$
 - Domain: $D_x^2 = [0, 10]$
 - Domain of y: $D_y^2 = [0, 90]$

- **Path 3** (P_3)
 - Transition: $y = 0.5 + 0.5\varepsilon_1$
 - Domain: $D_y^3 = [0, 1]$

- **Path 4** (P_4)
 - Condition: $y < 0$
 - Transition: $y = x*x + 2$
 - Domain: $D_x^4 = [0, 10]$
 - Domain of y: $D_y^4 = [-10, 0]\]

- **Path 5** (P_5)
 - Transition: $y = x*x + 2$

- **Path 6** (P_6)
Example 1: Abstract Interpretation (zonotopes)

```c
float x = [0,10];
float y = x*x - x;
if (y >= 0)
    y = x/10;
else
    y = x*x + 2;
```

\[y = x\times x - x \]

\[P_0: \hat{x}^0 = 5 + 5\varepsilon_1 \quad \varepsilon_1 \in [-1, 1] \]
\[D_x^0 = [0, 10] \]

\[y \geq 0 \]

\[P_1: \hat{y}^1 = 32.5 + 45\varepsilon_1 + 12.5\eta_1 \]
\[\eta_1 \in [-1, 1] \]
\[D_x^1 = [0, 10] \quad D_y^1 = [-10, 90] \]

\[y < 0 \]

\[P_2: \hat{y}^2 = \hat{y}^1 \quad D_x^2 = [0, 10] \]
\[D_y^2 = [0, 90] \]

\[P_3: \hat{y}^3 = 0.5 + 0.5\varepsilon_1 \]
\[D_y^3 = [0, 1] \]

\[y = x/10 \]

\[\hat{y}^4 = \hat{y}^1 \quad D_x^4 = [0, 10] \]
\[D_y^4 = [-10, 0] \]

\[y = x\times x + 2 \]

\[P_5: \hat{y}^5 = 39.5 + 50\varepsilon_1 + 12.5\eta_1 \]
\[\eta_1 \in [-1, 1] \]
\[D_x^5 = [2, 102] \]

\[P_6: \hat{y}^6 = \hat{y}^3 \cup \hat{y}^5 = 39.5 + 0.5\varepsilon_1 + 62\eta_2 \]
\[\eta_2 \in [-1, 1] \]
\[D_y^6 = D_y^3 \cup D_y^5 = [0, 102] \]
Example 1: Constraint Programming

\[P_0: D_{x_0} = [0, 10] \quad D_{y_0} = [-10, 90] \quad D_{y_1} = [0, 102] \]

\[
\begin{align*}
y_0 &= x_0 \times x_0 - x_0 \\
y_0 &\geq 0 \\
y_1 &= x_0 / 10 \\
\end{align*}
\]

Filtering:

\[
\begin{align*}
D_{x_0}^1 &= [0, 10] \\
D_{y_0}^1 &= [0, 90] \\
D_{y_1}^1 &= [0, 1] \\
\end{align*}
\]
Example 1: Constraint Programming

\[y_0 = x_0 \times x_0 - x_0 \]

\[y_0 \geq 0 \]

\[y_1 = x_0 / 10 \]

\[D_{x_0} = [0, 10] \]

\[D_{y_0} = [-10, 90] \]

\[D_{y_1} = [0, 102] \]

\[P_0: \]

\[P_6: \]

\[D_{x_0}^2 = [0, 1.026] \]

\[y_0 = x_0 \times x_0 - x_0 \]

\[y_0 < 0 \]

\[y_1 = x_0 \times x_0 + 2 \]

filtering
Example 1: Constraint Programming

\[P_0: D_{x_0} = [0, 10] \quad D_{y_0} = [-10, 90] \quad D_{y_1} = [0, 102] \]

\[y_0 = x_0 \times x_0 - x_0 \]
\[y_0 \geq 0 \]
\[y_1 = x_0 / 10 \]

Filtering

\[D_{x_0}^1 = [0, 10] \]
\[D_{y_0}^1 = [0, 90] \]
\[D_{y_1}^1 = [0, 1] \]

\[y_0 \geq 0 \]
\[y_0 < 0 \]

\[D_{x_0}^2 = [0, 1.026] \]
\[D_{y_0}^2 = [-0.257, 0] \]
\[D_{y_1}^2 = [2, 3.027] \]

\[P_6: D_{y_1}^3 = D_{y_1}^1 \cup D_{y_1}^2 = [0, 3.027] \]
Proposed approach: Combining AI and CP

Successive exploration and merging steps

• Use of AI to compute a *first approximation* of the values of variables at a program node where two branches join

• Building a constraint system for each branch between two join nodes in the CFG of the program and use of CP local consistencies *to shrink the domains* computed by AI
Filtering techniques

- **FPCS**: 3B(w)-consistency over the floats
 - Projection functions for floats
 - Handling of rounding modes
 - Handling of x86 architecture specifics

- **RealPaver**: 2B(w)-consistency & Box-consistency over the reals
 - Reliable approximations of continuous solution sets
 - Correctly rounded interval methods and constraint satisfaction techniques
Experiments: benchmarks

• Illustrative programs
 ▶ **quadratic** → real roots of a quadratic equation (GNU scientific library); contains many conditionals
 ▶ **sinus7** → the 7th-order Taylor series of function sinus
 ▶ **sqrt** → an approximate value (error of 10^{-2}) of the square root of a number greater than 4 (Babylonian method)
 ▶ **bigLoop**: contains non-linear expressions followed by a loop that iterates one million times
 ▶ **rump**: a very particular polynomial designed to outline a catastrophic cancellation phenomenon

• 55 benchs from CDFL, a program analyzer for proving the absence of runtime errors in program with floating-point computations based on *Conflict-Driven Learning*
Experiments: Results over the floating-point numbers

<table>
<thead>
<tr>
<th>Fluctuat (AI)</th>
<th>RAICP (AI + CP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domain</td>
<td>Time</td>
</tr>
<tr>
<td>quadratic (x_0)</td>
<td>([-\infty, \infty])</td>
</tr>
<tr>
<td>quadratic (x_1)</td>
<td>([-\infty, \infty])</td>
</tr>
<tr>
<td>quadratic (x_0)</td>
<td>([-2e6, 0])</td>
</tr>
<tr>
<td>quadratic (x_1)</td>
<td>([-1e6, 0])</td>
</tr>
<tr>
<td>sinus7</td>
<td>([-1.009, 1.009])</td>
</tr>
<tr>
<td>rump</td>
<td>([-1.2e37, 2e37])</td>
</tr>
<tr>
<td>sqrt1</td>
<td>([2.116, 2.354])</td>
</tr>
<tr>
<td>sqrt2</td>
<td>([-\infty, \infty])</td>
</tr>
<tr>
<td>bigLoop</td>
<td>([-\infty, \infty])</td>
</tr>
<tr>
<td>Total</td>
<td></td>
</tr>
</tbody>
</table>

Fluctuat: state-of-the-art AI analyzer for estimating rounding errors and their propagation using zonotopes
Experiments: Results over the real numbers

<table>
<thead>
<tr>
<th></th>
<th>Fluctuat (AI)</th>
<th>RAiCP (AI + CP)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Domain</td>
<td>Time</td>
</tr>
<tr>
<td>quadratic$_1$ x_0</td>
<td>$[-\infty, \infty]$</td>
<td>0.14 s</td>
</tr>
<tr>
<td>quadratic$_1$ x_1</td>
<td>$[-\infty, \infty]$</td>
<td>0.14 s</td>
</tr>
<tr>
<td>quadratic$_2$ x_0</td>
<td>$[-2e6, 0]$</td>
<td>0.14 s</td>
</tr>
<tr>
<td>quadratic$_2$ x_1</td>
<td>$[-1e6, 0]$</td>
<td>0.14 s</td>
</tr>
<tr>
<td>sinus7</td>
<td>$[-1.009, 1.009]$</td>
<td>0.12 s</td>
</tr>
<tr>
<td>rump</td>
<td>$[-1.2e37, 2e37]$</td>
<td>0.13 s</td>
</tr>
<tr>
<td>sqrt$_1$</td>
<td>$[2.116, 2.354]$</td>
<td>0.13 s</td>
</tr>
<tr>
<td>sqrt$_2$</td>
<td>$[2.098, 3.435]$</td>
<td>0.2 s</td>
</tr>
<tr>
<td>bigLoop</td>
<td>$[-\infty, \infty]$</td>
<td>0.15 s</td>
</tr>
<tr>
<td>Total</td>
<td>1.29 s</td>
<td></td>
</tr>
</tbody>
</table>
Experiments: eliminating false alarms

CDFL: Program analyzer for proving the absence of runtime errors in program with floating-point computations based on *Conflict-Driven Learning*

<table>
<thead>
<tr>
<th></th>
<th>RAiCP</th>
<th>Fluctuat</th>
<th>CDFL</th>
</tr>
</thead>
<tbody>
<tr>
<td>False alarms</td>
<td>0</td>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td>Total time</td>
<td>40.55 s</td>
<td>18.37 s</td>
<td>208.99 s</td>
</tr>
</tbody>
</table>

Computed on the 55 benches from CDFL paper (TACAS’12, D’Silva, Leopold Haller, Daniel Kroening, Michael Tautschnig)
Conclusion

AI + CP framework: Efficient computation and sharp good domain approximations

Further works: interact with AI at the abstract domain level
 - Better approximations
 - Keep statement contribution to rounding errors