Facial Expressions of Emotions for Virtual Characters

Magalie Ochs, Radoslaw Niewiadomski, and Catherine Pelachaud
CNRS-LTCI Télécom ParisTech
greta@telecom-paristech.fr

Abstract. The virtual character’s expressions of emotions may significantly enhance human-machine interaction. To give the capability to virtual characters to display emotions, the latter should be endowed with a repertoire of facial expressions that convey emotional meanings in conversational settings. In this chapter, we explore research works highlighting different methodologies both to identify the morphological and dynamic characteristics of emotional facial expressions and to measure the effects of the emotional expressions on the user’s perception during human-machine interaction.

Keywords: Embodied Conversational Agent (ECA), nonverbal behavior, stereotypical expression, lexicon

1. Introduction

Facial expressions convey information about emotional states, mood, intentions, stances, and so on. Even what seems a very simple signal such as head nod (Heylen, 2006) or smile (Ochs et al., 2011) can convey a large number of meanings. A slight change in their dynamism or morphology can be perceived by human observers and can be interpreted as transmitting different intentions and emotional states.

Embodied conversational agents (ECAs) are dialog partners to human users. As for human, they are endowed with human-like communicative capabilities. As such they ought to display a large repertoire of communicative and emotional behaviors. Moreover, several researches have shown that such a virtual character expressing emotions enhance human-machine interaction. One well-known effect of the expressions of emotions is the increasing of the agent’s believability by creating an illusion of life (Bates, 2009; Thomas and Johnston, 1981) but also the improvement of the user’s perception of the virtual character (Maldonado et al., 2004), of the user’s satisfaction (Hone, 2006), and of the user’s relationship with the virtual agent (Bickmore and Picard, 2005).

When building a repertoire of nonverbal behaviors for virtual agents, one is faced with gathering an important variety of signals where subtle variation can alter their meaning (within a given discourse context). So one of the difficulties that needs to be addressed is to find the adequate level of signals description to capture subtle variations while not over fitting the signals description. Another difficulty is to ensure the agent can convey multiple signals to convey any specific high level
function. This is crucial for the agents not at appear to be too repetitive. So this issue concerns creating signals with morphological or dynamical variations without altering their associated meaning. Another related difficulty is to ensure that facial expressions displayed by the agent correlate with events the agent is facing. Psychological theories, such as the appraisal theory of emotions (Scherer, 2001), highlight how the evaluation of the characteristics of a situation may trigger an emotional response. There is a tight connection between the evaluation process, the arousal of an emotion and its expression through behavioral changes. It is also important that human users interpret the created expressions as conveying specific messages. While it is necessary to be able to interpret the nonverbal behaviors of a virtual agent in a dialog context, it does not mean it should be highly readable. Indeed, highly recognizable expression may look too caricatural and may lose in naturalness.

The challenges described above need to be addressed when building a repertoire of multimodal behaviors for ECAs. We review below various attempts, some relying on theoretical models, other on data analysis or even computational models.

2. Creation of lexicon of virtual character's facial expressions

A facial expression arises from muscular contraction. To animate the facial expression of a virtual character, both the morphological and dynamic characteristics of the virtual face should be considered. Moreover, the combination of particular muscular activities may be associated to the expressions of emotions (Ekman and Friesen, 1975) and to communicative intentions (Poggi and Pelachaud, 2002). To give the capability to a virtual character to express through its face particular emotional states and communicative intentions, the latter should be endowed with a lexicon, i.e. a dictionary of facial expressions linking morphological and dynamic characteristics of the face to specific meanings. For sake of simplification, this mapping is defined here without considering the conversational settings. However the display of emotions and communicative intentions is influenced by the socio-cultural settings (Ekman, 2003).

To create a lexicon of virtual character’s emotional facial expressions, two methods may be distinguished. A first method consists in exploiting the empirical and theoretical research in Human and Social Sciences on the characteristics of human’s emotional faces (Section 2.1). A second method is based on the study of annotated corpus containing the expressions of emotions displayed by humans or virtual characters (Section 2.2).

2.1 Theoretical based lexicon of facial expressions

To create a repertoire of a virtual character’s facial expressions, the method that is commonly used consists in exploiting the empirical and theoretical studies in Psychology that have highlighted the morphological and dynamic characteristics of human’s facial expressions. Different theories lead to different approaches.

Categorical approach. Most of the computational models of virtual character’s facial expressions are based on the *categorical approach* proposed by Ekman and Friesen (1975). This approach is based on the hypothesis that humans categorize facial expressions of emotions into a number of categories similar across cultures: happy, fear, anger, surprise, disgust, and sadness (also known as the “big six”
basic emotions). Moreover, Ekman and his colleagues (2002) have developed a system to describe human facial expressions, called FACS (Facial Action Coding System). This system is widely used in the domain of virtual characters to simulate emotional facial expressions. The Moving Pictures Experts Group MPEG-4 standards support facial animation by providing Facial Animation Parameters (FAPs) as well as a description of the expression of the six basic emotions (Ostermann, 2002).

Dimensional approach. To allow virtual characters to express a large number of emotional expressions, a *dimensional approach* was proposed (Ruttkay, Noot, and Hagen, 2003; Tsapatsoulis et al., 2002; Albrecht et al., 2005; Zhang et al., 2007; Courgeon et al., 2009). In dimensional models, a new expression is often created by applying some arithmetical operations, such as linear interpolation, on numerical definitions of discrete emotions placed in the multi-dimensional space. For instance, the model called Emotion Disc (Ruttkay, Noot, and Hagen, 2003) uses a bi-linear interpolation between two basic expressions and the neutral one. In this approach, six expressions are spread evenly around the disc, while the neutral expression is set at its center. The distance from the center of the circle and an expression represents its intensity. The spatial relations in 2D are used to establish the expression corresponding to any point of the Emotion Disc.

Two models by Tsapatsoulis and colleagues (2002) and by Albrecht and colleagues (2005) use a similar approach to compute new emotional displays. Both models use the expressions of two "neighboring" basic emotions to compute a new facial expression. In Tsapatsoulis *et al.*'s (2002) a new expression can be derived from a basic one by "scaling" it, or by combining the spatially closest two basic emotions. In the latter case the parameters of these two expressions are weighted by their coordinates. Albrecht *et al.* (2005) extend this approach by introducing a three dimensional space of emotional states defined by activation, evaluation, and power and an anatomical model of the face based on FACS (Ekman and Friesen, 2002).

Several other models of emotional behavior rely on a 3D space called PAD defining emotions in terms of pleasure (P), arousal (A) and dominance (D) (Mehrabian, 1980). The model proposed by Zhang and colleagues (Zhang *et al.*, 2007) is based on PAD and a new parameterization of facial expressions: Partial Expression Parameters (PEPs). Each PEP defines a facial movement in a specific area of the face. Compared to other existing parameterizations (e.g., MPEG-4 (Ostermann, 2002)), PEPs ensure a similar amount of details, while using less number of parameters. The authors linked PEPs with values of P, A and D by conducting an experimental study. The validity of the expressions generated from PAD values was further confirmed in an evaluation study, where participants had to attribute the PAD and emotional labels to several generated animations (Zhang *et al.*, 2007).

The same three dimensional model was also used in a study by Courgeon *et al.* (2009) where participants navigated in a PAD space with corresponding facial animations using a 3D control device. Eight expressions (fear, admiration, anger, joy, reproach, relief, distress, satisfaction) were attributed to the extreme points of the three dimensions (valence, activation and dominance) while an interpolation of facial parameters defining an expression allowed for the generation of intermediate expressions (Courgeon, Buisine, and Martin, 2009).

The dimensional approach has the advantage allowing the generation of a large number of emotional facial expressions. However, the dynamic and the temporal characteristics of the expressions are generally not considered. Moreover, the large number of facial expressions poses the problem of the evaluation of all the generated emotional expressions.
Appraisal approach. Other models are based on an *appraisal approach* (Scherer, Schorr, and Johnstone, 2001) such as Scherer's Componential Process Model (Scherer, 2001). This cognitive psychological approach considers that facial expressions of emotions reflect how an individual appraises and deals with his environment. In this approach, values of appraisal variables (e.g., novelty, intrinsic pleasantness, conduciveness and coping potential) are associated to the activation of action units (smallest units of perceptible facial activity defined in FACS).

Among others, Paleari and Lisetti (2006) and Malatesta and colleagues (2009) focus on the temporal relations between different facial actions predicted by the sequence of appraisal evaluations of the Scherer's model. In (Paleari and Lisetti, 2006), the different facial actions are activated at different moments. The final animation that is generated on the virtual character's face is a sequence of several sub-expressions linked to the SECs cognitive evaluations.

In (Malatesta et al., 2009), the emotional expressions are created manually from sequences predicted by Scherer's theory. Differently from Paleari and Lisetti's work, each expression is derived by adding each new AU onto previous ones. What is more, Malatesta et al. (2009) compare their additive approach with a sequential one. Results show an above chance level recognition in the case of the additive approach, and only marginally above random choice in the case of sequential approach (Malatesta et al., 2009).

Recently another partial implementation of the Scherer's model was proposed by Courgeon and colleagues (Courgeon, Clavel, and Martin, 2009). In this model, the generation of facial expressions is directly driven by the evaluation of events appraised by the virtual character. For this purpose an appraisal module is implemented for a game-based scenario to associate to an event the values of seven appraisal checks (expectedness, unpleasantness, goal hindrance, external causation, copying potential, immorality, and self-consistence). Four emotions are implemented and described by their appraisal profile: anger, sadness, guilt and joy. Expressions are generated at two levels. First, a temporary animation corresponding to the currently evaluated appraisal variable is displayed. When the evaluation of the event through all appraisal variables is finished, the system computes to which emotion corresponds the sequence of appraisal values and displays the corresponding full facial expression. The result of this evaluation can be one or more emotions. In the latter case the system displays a blend of emotions.

The appraisal approach offers a detailed control on the single elements of facial expressions as well as on their dynamics (i.e. sequence). However, the appraisal theories are still incomplete regarding the facial action predictions. They are also complex and difficult to implement since the modeling of cognitive capabilities to infer the values of appraisal variables is required.

2.2 Corpus-based lexicon of facial expressions

To gather more subtle and natural expressions, other approaches are based on the analysis of annotated corpus of human or virtual faces.

Synthesis of emotional facial expressions from annotated human faces. To collect real data of persons expressing emotions, a first method consists in recording videos of actors having the instructions to express specific emotions. Another method consists in collecting spontaneous expressions by exposing people in situations triggering various emotions. For instance, a common
method to generate frustration is to simulate a bug in a computer program participants have to interact with. The second step is the annotation of the corpus to attribute labels to expressions, and to find out the morphological and dynamic characteristics of the emotion to create the lexicon of emotional facial expressions.

Based on an annotated corpus of humans expressing emotions, two approaches to synthesize virtual emotional faces have been explored. The facial expressions can be synthesized at a very low level by retargeting the points tracked on a human face to a virtual mesh or, at the higher level, using copy-synthesis approach. In the later the virtual character’s expressions are synthesized from the manual annotation of the human facial behavior.

The synthesized facial expressions are labeled and stored in the lexicon using low-level animation format such as MPEG4 (Ostermann, 2002) or FACS (Ekman and Friesen, 2002).

These two different approaches for building a lexicon of facial expressions were used in (Niewiadomski and Pelachaud, 2012) to build a repository of laughs. The authors built a lexicon of facial expressions using high-level procedural animation synthesis from manual annotation and low-level data-driven animation synthesis based on optical motion capture system. The first approach consists of manually annotating the facial expressions using FACS coding (Ekman and Friesen, 2002). Then, the FACS based manual annotation of each episode is converted into Behavior Markup Language (BML) (Vilhjálmsson et al., 2007). BML is an XML-like standard script language used to control the behavior of a virtual character, including the face. The other method uses machine learning algorithm and motion capture data. The 3D points of 27 markers are captured for each frame of the expression and then are retargeted to the virtual mesh using Temporal Restricted Boltzmann Machines (Zeiler et al., 2011). In this approach the model was trained to find a mapping between the 84 dimensional space of input data and the 68 FAPs in MPEG-4. The model once trained, can be successfully applied to different data sources only with a minimum manual tuning (Niewiadomski and Pelachaud, 2012).

These two approaches offer different degrees of flexibility and control over the expression and different levels of realism and precision of the movements. Motion capture based animation is usually richer in movements and consequently it may be perceived as more realistic. Also the motion capture data permits maintaining the temporal and dynamic characteristics of the original expression. At the same time, optical motion capture system is invasive as markers need to be placed on the actors' face and may limit their spontaneous reactions. It is also resource and time consuming.

On the other hand, describing animation by sequences of action units allows one to control precisely an animation and its meaning (e.g., by adding or removing AU6, a marker of the Duchenne smile) but has all the weaknesses of procedural approaches to facial animation. The animation is poor in details and the dynamics of the movements is not very realistic.

User-perceptive approach for emotional facial expression synthesis. As highlighted in (Grammer and Oberzaucher, 2006), most of these corpus-based studies on emotional facial expressions consider a top-down approach. An emotion label is attributed to each facial expression. This approach supposes that to each emotion corresponds to a facial expression. However, each emotion may be represented by different facial expressions. Some researchers have explored other methods
to investigate different facial expressions for each emotion type. For instance, in (Snodgrass, 1992; Grammer and Oberzaucher, 2006), a bottom-up approach is proposed.

In this approach, one to several action units selected randomly are activated on a virtual face. Observers rated the randomly generated facial expressions using two emotional dimensions (pleasure and arousal) and, in a second step, these two dimensions are mapped onto emotion types. This method has the advantage not to restrain the emotional facial expressions to a limit number of emotion types. Moreover, the lexicon of virtual character’s emotional facial expressions is directly created based on human’s perception.

More recently, Boukricha and colleagues (2009) run a perceptive study to investigate the link between randomly generated facial expressions composed of several action units and their perception along the three dimensional space PAD (Mehrabian, 1980). These PAD ratings resulted from naive participants’ evaluation of bipolar adjectives using a Likert scale (Semantic Differential Measures of Emotional State or Characteristic (Trait) Emotions, as proposed by Mehrabian and Russell (1974).

The evaluated expressions were placed in the dimensional space, where Dominance takes one of two discrete values (high or low dominance) and where Pleasure and Activation values were mapped onto a continuous space. A facial expression control space was constructed from multivariate regressions. It consisted in mapping AUs and the dimensions allowing one to generate a facial expression to any point of the 3D space.

Following a user-perceptive approach, another method to create a repertoire of emotional facial expressions for virtual characters, consists in collecting a corpus of virtual character’s expressions directly created by users. This method breaks with the traditional approach used to create repertoire of expressions: instead of asking people to label existing expressions, users are at the heart of the creation process of virtual character’s expressions. This method has been first used to identify the morphological and dynamic characteristics of different types of smile (amused, polite and embarrassed smiles) (Ochs et al., 2011). A web application has been developed to enable a user to easily create different smiles on a virtual character’s face (Figure 1).
Through radio buttons on an interface, the user could generate any smile by choosing a combination of seven parameters (amplitude of smile, duration of smile, mouth opening, symmetry of the lip corner, lip press, and velocity of the onset and offset of the smile). Two or three discrete values were considered for each of these parameters (for instance, small or large for the amplitude of the smile). When the user changes the value of one of the parameters, a virtual character shows automatically the corresponding animation. Considering all the possible combinations of the discrete values of the parameters, there are 192 different possible combinations, each one corresponding to a smile. Users were instructed to create one animation for each type of smile. The collected corpus contained 348 descriptions for each smile (amused, embarrassed, and polite). Based on this smile corpus and on a decision tree classification technique, an algorithm has been defined to determine the morphological and dynamic characteristics of the smile types (Ochs et al., 2011). As in the approach proposed in (Grammer and Oberzaucher, 2006), the advantage of such a method is to consider, not only one single expression for each smile type but a variety of facial expressions. That enables one to increase the repertoire of the virtual character's expressions.

2.3 Facial expressions rendering

The past 10 years have seen many works on creating photorealistic skin rendering. Incredible results have been obtained that imitate extremely well digital photos of human faces. Several aspects of rendering need to be addressed. At first there is the skin rendering. Skin is a complex material which is translucent and partially reflects light. Wrinkles are also an important feature of realistic faces. Wrinkles can be due to muscular contraction due to expressions and can be static due to aging. Other communicative features of faces include tears, pallor and blushing.
The Emily project led by Debevec's group (Alexander et al., 2010) aims to pass the Turing test in facial performance; i.e., it aims to reproduce with a very high degree of realism the rendering and the animation of faces. To this aim a sophisticated scan system called Light Stage was built; it is made of a dome of hundreds of LED that allows capturing the face of an actress with lighting coming from every directions. The LEDs can be modified to simulate various lighting conditions. From the captured images of the actress the subsurface and the specular reflections of the actress' face are separated. Moreover ambient occlusion corresponding to self-shadowing and inter-reflections along cavities of the nose, eyes and mouth corners is taken care of. The final rendering of the face is using a hybrid normal rendering algorithm (Ma et al., 2007). Animation is obtained by capturing the actress doing various expressions and creating corresponding blend-shapes.

Stoiber et al. (2010) developed an algorithm to reproduce facial rendering and animation with high resolution in real-time and with less heavy device than the previous model. A camera mounted on a helmet worn by the actor records her facial expressions. Facial expressions of a participant are recorded and tracked using contours in real-time. Using motion models the recorded facial expressions are reproduced onto synthetic models after some retargeting. The dynamism of the facial expressions is maintained: the motion models are learned on motion capture data and integrate how facial expressions dynamisms are non-linear and dependent on movement amplitude (Stoiber, Breton, and Séguier, 2010).

Jimenez et al. (2010) proposed a model that renders perceptually realistic human skin. To obtain real time, their idea was to translate the simulation of subsurface scattering effects from texture to screen space. Later on the authors added expressive wrinkles onto their model (Jimenez et al., 2011). Wrinkles are designed as normal maps that are added to base normal maps and blend shapes in a weighted manner. To validate that their approximation did not introduce loss in realism, the authors conducted perceptual studies. Participants viewed images of faces rendered with different lighting conditions; they had to choose which faces were the closest to real human faces.

Other models of wrinkles have been proposed. They can be gathered into two main approaches: geometry and texture based methods. While geometric methods simulate dynamic wrinkles by deforming directly mesh geometry (Courgeon, Buisine, and Martin, 2009), texture based methods use bump mapping (Blinn, 1978). For instance, Niewiadomski et al. (2012) use the texture based technique called Screen Space Bump Wrinkle to model wrinkles. In this approach the surface normal vector is modified before the lighting computation, thus using the new bent normal in the render process gives visually satisfying result without changing the surface geometry. Simulation of wrinkle effects is performed by computing the perturbed Normal vector in screen space with Pixel Shader. Thus the complexity of the computation only depends on the number of pixels, and not on the number of vertices of the facial model. Twelve groups of wrinkles related to different AUs are defined as texture. In runtime, when an action unit is activated on the face mesh, the GPU receives its intensity value and computes the corresponding wrinkles. The final result is the composition of all active wrinkles (see Figures 2 and 3).
de Melo and Gratch (2009) integrate not only wrinkles but also blushing, tears and sweating effects into facial rendering. Wrinkles are modeled using bump mapping and, then, are synchronized with the muscular based facial model. Interestingly, the simulated wrinkles are copied from the pictures of a human displaying the respective wrinkle configuration. Photographed wrinkles are then converted to grayscale, blurred and applied onto the virtual human texture. The tearing and sweating animation are also modeled through bump mapping and relies on the modeling of water's properties and dynamics.

Works by (Larboulette and Cani, 2004; Courgeon, Buisine, and Martin, 2009) are examples of geometry deformation approaches. Mesh editing tools are used to define control points which are perpendicular to the wrinkles, and to define the influence regions associated to each wrinkling curve. The wrinkling behavior is controlled through a set of parameters that specifies the way the mesh deforms.

3. The virtual character's emotional facial expressions in interaction

The virtual character's emotional facial expressions are generally constructed without considering the context of the interaction. To take advantage of a virtual character displaying emotions, the emotional facial expressions should be expressed in appropriate situations during the interaction.

3.1 Expressions of emotions in context

Several researches have shown that virtual character expressing emotions enhance human-machine interaction (Bates, 2009; Thomas and Johnston, 1981; Maldonado et al., 2004; Hone, 2006; Bickmore and Picard, 2005). However, some studies (Beale and Creed, 2009; Ochs, Pelachaud, and Sadek, 2008) have highlighted the importance of the social context. The social context includes the situation in which the user and the virtual characters are (place, actions, etc.), the social roles of the participants of the interaction, the cultural context, and the social norms (Riek and Robinson, 2011).
For instance, as shown in (Beale and Creed, 2009), an emotional virtual character may have a
different impact on users depending on its social role. For example, an emotional learning
companion leads to better effects on users' perception than an emotional tutor (Beale and Creed,
2009). The situation in which the emotions are expressed, i.e. when and which emotions are
displayed during the interaction, plays an important role on users' behavior. Some emotional
behaviors, such as the expression of empathy, seem to enhance the interaction whereas the
expressions of self-emotions may have few impacts (Beale and Creed, 2009). Moreover, an emotion
expressed in an inappropriate situation may even have negative effects on the interaction, for
instance by deteriorating users' perception of virtual characters (Ochs, Pelachaud, and Sadek, 2008).

To automatically compute the emotions that a virtual character should express, some existing
tools can be used. For instance, the open-source computational model FATIMA (FearnotAffecTive
Mind Architecture) (João and Paiva, 2005) computes the emotions of a virtual character elicited by
events occurring in the environment, considering the influence of the character's personality, social
relations, culture, and empathy. Others computational model of emotions have been developed (for
more details, see Chapter 5 by Gratch and Marsella). Such a model of emotions may compute not
only one emotion type but several ones. Indeed, an event may elicit a sad emotion in the virtual
character, but also a little bit of surprise, and at the same time, the social norms indicate that in this
situation the virtual character should express joy. This kind of situation occurs every day in human
life. To create emotional reflexive agent, and not an impulsive one with an emotional behavior
similar to a child, a virtual character should convey these emotional subtleties (Ochs et al., 2005).
Consequently, the expressions of emotions might result in a combination of several emotion types.
Several computational models have been proposed for the synthesis of blending of emotions (for
instance (Albrecht et al., 2005; Ochs et al., 2005).

3.2 Perceptive studies of emotional virtual characters

Virtual character's facial expressions of emotions may have significant impacts on the interaction,
and more particularly on users' behavior. A same facial expression of emotion may lead to positive or
negative effects depending on the social context in which the emotion is displayed. Consequently, an
important step is the evaluation of the virtual character's expressing emotions.

Perceptive studies of emotional virtual characters may be considered at two levels:

- a context-free level of evaluation: only the perception of the emotional facial expressions is
evaluated without considering any information about the context;
- a in-context level of evaluation: the perception of a virtual character expressing emotions is
evaluated in a particular context of interaction.

Context-free level of evaluation. In a context-free level of evaluation, the objective is to validate that
the emotional facial expressions are recognized with the expected intensities and types (or
dimensions such as pleasure and dominance as proposed in (Grammer and Oberzaucher, 2006)). The
context of the interaction is not considered. The method generally used to perform such an
evaluation is to present videos of virtual characters expressing the emotions and to ask users to
indicate the recognized emotion types and intensity through forced choice questionnaire.
To capture the uncertainty of the users on the recognized emotions, Likert scales (with for instance different levels of agreement: Strongly disagree, Disagree, Slightly disagree, Neither agree nor disagree, Slightly agree, Agree, Strongly agree) could be used to collect the users' responses.

Several perceptive studies at a context-free level have highlighted the role of the dynamics, intensity and rendering of synthesized facial expressions of virtual characters on the user's perception. For instance, Katsyri and Sams (2008) showed that synthetic dynamic expressions were identified better than static ones only for expressions whose static displays were not similar. In a similar study of Noël et al. (2006), the effect of the dynamics was however not observed. Bartneck and Reichenbach’s work (2005) shows that the higher intensity expressions were better recognized. In (Courgeon, Buisine, and Martin, 2009) they have shown that the application of wrinkles increases the agent's expressivity but does not improve the recognition. Also in de Melo and Gratch (2009), wrinkles, blushing and sweating add to the expressivity of some stereotypical (basic) expressions such as anger, fear or sadness.

Keltner (1995) shows that expressions of emotion are rather a sequence of facial actions than full-blown single-shot displays. The later ones occur rarely in real-life interactions. Single facial actions are ambiguous as they can be the components of different facial expressions. The action unit identification on virtual faces can be more challenging than the identification of the stereotypical full-blown expressions. While the latter can be easily identified from a subset of features (i.e. some information is redundant) the identification of atomic facial actions is local and it requires that the attention is made on details. Nevertheless it can be supposed, following for example the appraisal theory, that the apparition of each action unit in the sequence is significant and meaningful, thus, if some of these are not properly identified the meaning of a facial expression can be altered. The work presented in (Niewiadomski, Huang, and Pelachaud, 2012) is an example of perceptive study at a context-free level that focuses on the perception of single facial actions rather that on stereotypical expressions. The results have shown that single facial actions are better identified when they are dynamic and with higher intensity. On the other hand, intense expressions of single facial actions are perceived less natural and less realistic. Finally, wrinkles did not improve significantly the identification of facial actions (Niewiadomski, Huang, and Pelachaud, 2012).

Even if the evaluation at a context-free level is done out of the context of an interaction, some elements of the social context may impact users' perception. The gender of the virtual character as well as the gender of the users rated the expression might lead to different perception. For instance, as shown in (Krumhuber, Manstead, and Kappas, 2007; Katsikitis, Pilowsky, and Innes, 1997), women are more sensitive to non-verbal signs and more able to decode facial expressions cues, even for virtual characters' faces. Moreover, women make more extreme judgment ratings than men when decoding facial expressions (Katsikitis, Pilowsky, and Innes, 1997).

In-context level of evaluation. One main limit with the evaluation presented above is the lack of interactivity with the user. Indeed, the user remains passive since she is not involved in the conversation with the virtual character. The in-context level of evaluation consists in studying the effects of emotions expressions on the overall interaction. The objective, in this case, is to measure the benefits of the emotional virtual character on the user who is involved in an interaction with the virtual character. More than an evaluation of the facial expressions themselves, in the in-context level, it is the emotional behavior of the virtual character (i.e. when and which emotions are
displayed during the interaction) that is analyzed. As highlighted in the previous section, this kind of evaluation is all the more important since the effects of emotion expressions may vary from positive to negative depending in the circumstances in which they are expressed.

To measure the effects of a virtual character's emotional behavior, users generally interact with a virtual character in, at least, two conditions: a condition in which the virtual character does not express any emotion (control condition), and a condition in which users interact with the virtual character expressing emotions. A questionnaire at the end of the interaction is generally used to collect the users' overall perception of the virtual character and/or of the interaction. Objective measures may also be collected to analyze the effects of emotions. For instance, physiological sensors may be used to study the emotional reaction of users (Becker et al., 2005). The analysis of users' performances (i.e. score of test or ability to recall information) may enable one to study the benefits of an emotional character on task achievement (Maldonado et al., 2004). As proposed in (Klein, Moon, and Picard, 1999), the length users interact with a virtual character may be an indication of users' engagement.

Several studies evaluate the appropriateness of the facial behavior to the context of an interaction. In the experiment by Walker, Sproull, and Subramani (1994) people liked the facial interface that displayed a negative expression less than the one which showed a neutral expression. However, in a card game the agent that displayed only positive expressions, irrespectively of the event, was evaluated less `human being' than the one that also expressed negative emotions (Becker et al., 2005). In Rehm and André (2005), the agent expressing emotions was compared with the agent showing additionally subtle expressions of deception. The agent with deceptive facial expressions was perceived as less credible and less trustworthy. In Lim and Aylett (2007) study on interactive guide using appropriate emotional displays was perceived to be more believable, natural, and interesting than the agent without emotional displays. These results suggest that the choice of emotional displays influences the perception of the agent. They also highlight the role of the context in the judgment.

4. Conclusion

In conclusion, the emotional facial expressions of virtual characters are generally created with the assumption that virtual characters should display emotions as humans do, i.e. with the same morphological and dynamic characteristics of the face. Most of the models of emotional facial expressions are often based on either empirical or theoretical research in Human and Social Sciences. However, computational models may enable us to go beyond these methodologies by analyzing automatically generated facial expressions that humans may not simulate well on demands (i.e. during corpus generation with actors), and then that may be difficult to study.

During human-machine interaction, the same emotional facial expression of a virtual character may have different effect, from positive to negative, on the user's perception depending on the situation in which the emotion is expressed. For instance, the expression of joy of a virtual agent in response to the user expressing sadness will certainly have a negative effect on the user's perception of the agent. The display of emotions should be appropriate or plausible in the situation of the interaction. As highlighted in (Demeure, Niewiadomski, and Pelachaud, 2011), the emotional facial expressions
are appropriate if they meet expectations of what one is supposed to feel in a given situation. However, an emotional expression may be inappropriate but plausible when the expression is displayed in a situation even if the expression is not the appropriate one. The recent work of de Melo et al. (2012) shows that the user applies "reverse appraisal" to interpret the virtual character's emotional expression and then to deduce information from virtual character's facial expressions regarding for instance its goal conduciveness. An emotional expression may then be displayed depending on the values of the appraisal variables the virtual character wants to convey to the user.

Acknowledgment. This research has been partially supported by the European Community Seventh Framework Program (FP7/2007-2013), under grant agreement no. 231287 (SSPNet) and under grant agreement no. 270780 (HILAIRE).

References

Glossary

Action units (AU): “Visible results from the contraction or relaxation of one or more muscles, used also to describe higher level concepts in the Facial Action Coding System (Ekman et al., 2002)” (Petta et al., 2011).

Behavior Markup Language: “Representation language comprising all those representations that are necessary for the realization of behavior. It includes directives for the realization of textual and prosodic information, facial display, gestures and postures, eye gaze, and, very importantly, directives for the temporal synchronization of behaviors” (Petta et al., 2011). (http://www.mindmakers.org/projects/bml-1-0/wiki).

Embodied Conversational Agent (ECA): “An embodied conversational agent (ECA) is a human-like conversational character able to engage with the user in multimodal communication. The usual modalities include speech, facial expression, eye gaze, head movement, body posture, and hand-arm gesture” (Petta et al., 2011).

Facial action coding system: “A categorization system for facial behaviors based on the underlying musculature. Facial behaviors are coded in terms of action units involved in a change in appearance as well as duration, intensity, and asymmetry” (Petta et al., 2011).

Lexicon: A list of correspondences between signals and meanings. (Poggi, Pelachaud and de Rosis, 2000).

Nonverbal behavior: Non-verbal behavior corresponds to “facial expressions, body language, social touching, vocal acoustics, and interpersonal distance” (Ambady and Weisbuch, 2010). Non-verbal behavior may convey several information, for instance on one’s emotions or attitude. Nonverbal communication “refers to the sending or the receiving of thoughts and feeling via nonverbal behavior” (Ambady and Weisbuch, 2010).

Stereotypical expression: According to many theorists, there are universal facial expression patterns linked to the six basic emotions (joy, disgust, anger, surprise, sadness, and fear) as defined by Paul Ekman (Ekman and Friesen, 1975).